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Introduction

Vector criterion optimization problems arise when
. several optimality criteria are relevant to a physical situa-
) tion and their relative importance is not obvious, The first
formulation of such a problem was giveg by the economist
Pareto in 1896 (1), and since then discussions of vector .
valued optimization have kept reappearing in economics, - e
operations research and, more recently, in control engi- , R
neering, References (2), (3), (4), (5), (6), (7) form a re- CFSTI
presentative sampling of the related literature in these
fields.

R e el &

In this paper we extend some of the necessary con- _H' Cf a
ditiqns and theorems on '"scalarization''(i.e,, the conver- WVIE V .
sion of the problem into a family of optimization problems
with a scalar criterion), which we gave in (7) for problems

. defined in R™, to linear topological spaces._ It will be ob-
served that our derivation of necessary conditions follows
the well trodden path established in (8), (9), (10).

The problem of scalarization is very ir_ﬁportant,
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since whenever scalarization is possible, standard non-

linear programming algorithms become applicable, We

concentrate on scalarization by weighting the components

of the vector cost with strictly positive coefficients into a e e Eme
real valued function, since this represents the physically ’

most meaningful case, Our major result in this area is I A
theorem (4), for which we give a proof suggested by Prof, Woemeaat
H. Halkin of University of California, San Diego, and which
is shorter than our original proof in (7) and (11).

I, The Basic Problem and Necessary Conditions e

Let E°, where s is a positive intege;, be the s~
dimensional Euclidean space with the usual norm topology. . W ey sl
Let X be a real, linear topological space; let h : € - EP and
" r :3€—>E™ be continuous functions, and let Q be a subset of X,
Furthermore, suppose that we are given a partial ordering
in EP with the property that for every y in EP there exists
an index set J(y)C {1, 2,...,p} and a-ball B(eg, y) with
center, y and radius g, > 0 such that every ¥e B(gg, y) satis-

fies §* < y* for all ieJ(y), if and only if § < y and y X ¥,

Definition 1: We shall call the index set J(y) and the
ball B(eg, y), defined above, the critical index set and the
critical neighborhood for the point y, respectively, : G

Examples: Suppose that y; < vy, if and only if yi_<_ yE for
i=1 2, ..., p, then we see that J(y) = {1, 2,...,p} for , :
all y e EP, Again, suppose that p>1 and y; < y, ifand .. L.
only if Max{y; li=1,2, ...,p} <Maxfy: =12,...,p}. : L
Now J(y) # {1, 2,...,p} and it is seen to change from point
to point in EP, ‘
The problems we wish to consider_can always be
- cast in the following standard form. l R
Basic Problem: Find a point x in X, such that: (i) x ¢ Q
and r(x) = 0; (ii) for every x in @ with z(x) = 0, the relation
h(x) < h(x%) implies that h(x) < h(x). = .. ‘ -
As a first step in obtaining necessary conditions for ,
a point x to be a solution to the Basic. Problem, we intro- =
duce '"linear' approximations to the set 2 and to the con-
tinuous functions h and r at x. ‘ '
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Definition 2: We shall say that a convex cone C(:;,Q)

is a conical approximation to the constraint set Q2 at the
point xe Q@ with respect to the functions h and r, if there
exist continuous linear functions h'(x):X—>EP and r'(x):
X - Em such that for any finite collection {x, X5 e 00 Xk}
of linearly independent vectors in C(x, Q), there exists a
continuous map §; from €S 8¢ {sxl, EX2, 0n s sxk} , into
Q - x, for each g 0<¢<], and continuous functions Op, ¢
X >EP and oy, et X > EM™, which satisfy (1), (2), (3) and
(4) below:

Hoh’ [(ex)[[/e > 0 as & > 0 uniformly for xeS (1)

l[or’ ésx)"ﬂ - 0 as ¢ - 0 uniformly for xe¢S  (2)
h(x +¢_(x)) = h(¥) + h'(R)(x) + o (),
for all x eeS, 0<e<1 - (3)
r(x + ¢ (x) = #(%) + r'(E)(x) +o_ (%),

for all x ¢S, 0<e<1 (4)
Theorem 1: If x is a solution to the Basic Problem,
if C(%, Q) is a conical approximation to € at %, and if
J(h(}?)) is the set of critical indices for h(x), then there
exist a vector p in EP and a vector n in E™ such that
(i) ul <0 for ieJ(h(x)) and p.l = 0 for 1eJ(h(x)),

(i) (wm) # 0;

(iii)  ps h'(x)(x)) + {nr '(x)(x }> < 0 for all xe C(%, Q),
where h‘(x), r!(X) are the linear continuous maps appearing
in the definition of C(x, Q). :

Proof: Let x be a solution to the Bas1c Problem Let
J(h(x)) and B(eo, h(X)) be, respectwely, the critical 1ndex set
and the critical neighborhood of h(X) in EP,. . Also, let q be
the cardinality of J(h(X)) and let f, f'(X) be continuous
functions f:iom X into EY defined by f(x) = (fl(x), oo £ (x)),
f’(ix)(x) = fY(&X)(x), .. .5 £'92)(x)), where £ = hJ f’J(x)

h'J(x), with 1J € J(h(x)) for j=14,2,..., q and iy >1ip when
a > B. Now let :
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A(%) = {yeEQ]y = £'(x)(x), xeC(x,Q)}, - (5)
B(x) = {z ¢E" |z = r'(%)(x), xeC(x )}, ()

K(x) = {ueET X EM |u= (£(X)(x), r(X)(=)),
XeC(X,Q)} : (7)
R={(y,0) ¢ EIx E®|y = (v} v% ...v9),
y'<0, y2<0,...,y3<0,0<E™}, (8)

Exarmmng (i), (ii), and (iii), we observe that if we
define pi = 0 for ieT(h(k)), the complement of J(h(x)) in
{1, 2,...,p}, then the claim of the theorem is that the con-
vex sets K(x) and R are separated in EY x E™,

We now construct a proof by contradiction, Suppose
that K(x) and R are not separated in E4 X E™, -Then,

(I) The convex sets K(x) and R are not disjoint, i, €.

R N K(X) # ¢, the empty set,

(II) The convex cone B(X) in E™ contains the origin as an-
interior point and hence B(x) = E™M,

Statement (I1) follows from the fact that if 0 is not
an interior point of the convex set B(X), then by the sepa-
ration theorem (12), there exists a nonzero vector Mg in
"E™ such that

<n0, zy <0 for all z € B(X). (9)

‘Clearly, the vector (O ng) in EY x g™ separates R- from
A(x) X B(x) and hence from K(X), since K(X)C A(x) X B(x),
contradicting our assumption that R and K(x) are not
separated,

Since the origin in E™ belongs to the non~void inter-
jior of B(X) we can construct a simplex ¥ in B(§), with
vertices Zy ZZ’ cees By such that

(i) 0 is in the interior of Z;

_(ii) there exists a set of vectors {xp, %55 0 ety Xm-l-l}
in C(x, Q) sat1sfy1ng ~

(a) z; = r'(x)(x;) for i=12,...,m+1; (10)
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(b) &,(x) (2-%)N N) for all xecolxy xp 000y x_ 0} (11)

where §; is the map entering the definition of a conical ap-
proximation and N is a neighborhood of 0 in 3 such that
h(x + N) C B(eg, h(x)), where Bleg, h(x)) is the critical
neighborhood for h(x)., (Clearly, such an N exists since h
is continuous).. : v

(e) y; = £1(x)(x;) <0 for i=12,..., mtl | (12)

Let &), 12, ay L, be any basis in Em, and let S
Z:E™ g™, X: E™ —>)€ be linear operators defined by
Z!L:l = (zi - m+1)’ (x1 - X ), respectively, with
i=142,..., m, Smce O¢ int X, the vectors (z "Zm+1)’ i=1,
2, ..., m, are linearly 1ndependent and hence the operator
Zis nonsmgular. Let Z7° denote the inverse of Z, Clearly
the map z - X7~ (z Zm+1) + X+l from Z into
co{xl, X5y 00y Xm-!-l} is continuous,
For 0 <a <1, we now define a continuous map G
from the simplex @ ¥ into EM by
G (az) = r(x + ¢ (a Xz’l(z ~z ) Fex

s (13

where £, is the map specified by Definition 1,
Since r(%X) = 0, r'(%) X = Z, and r'(x)(x,,)) = z

(13) becomes mil

- R - ) ) _1, . ° ..
Ga(ozz) = oz +or(oz Xz (z -~ Z'm+1) +ozxm+l). (14)
It now follows from (2) and Brouwer's fixed point
theorem (13) that there exists an @ € (0,1] such that for
every ae(O ap] we can find a z,eZ satisfying G, (a z ) = 0.

Since by construction

i”(?&)(-}iz'i(z - zm+l)+x )< 0 for all ze S and i=L42,...,9
(15)
there exist by (1) oy >0, a, >0,400; ozq > 0 such that
i~ -1 i~ '
f (x+§a(aXZ (x =~ Zm+1) + o xm+l)) < f(x) for all zeZ,

i
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OZE’(0,0!-], andi:l,Z, ---,Cl, (16)

Let a be the m1n1mum of {ag, @ ,.. o }, and let z¥e -
satlsfy G '.~(a z )— 0. Then, x* =%+ (cz XZ" 1(z>"—zm+1)
+o Xt )als in Q, r(x ) = 0, h(x )Ah(x), and h(x) Kh(x"'),
which contradicts our assumption that x, is a solution,

Hence the theorem is true,

II. An Application to Optimal Control

We now illustrate the theory developed in the preced-
ing section by obtaining a Pontryagin type maximum princi-
ple for an optimal control problem with a vector valued cost
function,

The Optimal Control Pr oblem: Let z = (y, x), with ye E:p xsE
Given a differential system

dz(t)
dt

= F(x(t), wt), telt,t],7 (17)

where u(t) e E™ is the control and F =(c, f) is a map from
ED X E™ into EPT (¢(x, u) e EP, f(x, u) ¢ E'), continuous in
u and continuously differentiable in x, Find a control ult)
and corresponding trajectory z(t) determ1ned by (17), such
that
(i) For te [to tf] , U isa measurable, essentially bounded
function whose range is contained in an arb1trary but fixed
subset U of E™ . -
(ii) The followmg boundary conditions are satisfied:
(a) z(t ) = z = (0,%x ), where X, is a given vector in E",
and (b? g(x(tf)) = 0, oWhere g : EB —>]E)‘.jZ is a continuously dlf-
ferentiable map whose Jacobian —ag( has maximum rank
for all x satisfying g(x) = 0. . S
(iii) For every control u(t) and corresponding tra_]ectory
z(t), te[t , tg], satisfying (i) and (ii) above, the relation
y(tg) < y(tg) implies that y(tf) = (tf)

- To transcribe the optimal control problem into the
form of the Basic Problem, we take 3 to be the product space
5 ptn = 3 x8x%...x S, where 3 is the space of all real
valued functions on [to, tg], which are either upper or lower
semi-continuous at each point te [to, tf] , with the pointwise
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topology. We define Q to be the set of all absolutely contin-
uous functions z = (y, x) from [t , t;] into EPT™ which for
some u satisfying (i) above, satisfy the differential equa-
tion (17) for almost all telty, t¢], with z(ty) = (0, xg). Fi-
nally, we define h(z) = y(t;) and r(z) = g(x(tg)). It is easy
to show that both h and r are continuous,

Suppose the control u(t) and the corresponding trajec~-
tory z(t) solve the optimal control problem, To construct
a conical approximation C(z, Q) to 2, we follow L. W,
Neustadt's derivation (8), which was based on a utilization
of the cone of attainability given in (13) by Pontryagin et al,
let IC [tos te] be the set of all points t at which G(t) is
regular,

Let &(t, 1) be the (p+n) X (p+n) matrix which satis-
fies the linear differential equation B

St = 25 (o, wn) et 7, (18)

for almost all te[t,, t;] with &(T,7) =1 the (p+n) iden-

tity matrix,
For any se¢l and veU we define *

” (t) = {Ofortof_t<s
v &(t, s) [F(x(s), v) - F(x(s), (s)]

pn?

for s<t<t. (19
and
: ) k
Clz, Q) = {62¢X |62(t) = Z“' 6z (t) ,
i s,,v,
i
{Sl, So1eess S } cli, {v s Vareees V. } CU, and
@ > 0 for i=12...k where k is arbitrary finite} .

(20)
F1na11y, for every 8z = (by, 6x) € 3¢ , we define
h'(z)(6z) = 8y(te) and r'(2)(6z) = (g(X(tg) /0x) &x(t).
It now follows from theorem 1 that there exist a vec-
tor p <0 in EP and a vector ne E‘q, (p,m) # 0, such that
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Cwosyltgd> + <m ZBEED gy <o
| for all 8ze C(Z, Q) (21)

Substituting for &z(tg) from (20) into (21) and making the
usual identifications, we obtain the following maximum
principle, :

Theorem 2: If the control ﬁ(t)" and the correspond-
ing trajectory z(t) = (¥(t), x(t))solve the optimal control prob-
" lem, then there exist a vector ¢, <0 in EP and a vector . -

valued function {5, :[to te] = E™ " with (Y Y (1)) # 0 such
that ,

- dq} (t) -~ -~ T -~ - T
(i) 2 ac(x(t), u (t)) of(x(t), u(t))
at - T C ( " ox ) 4’1'( Bx )4’2(”’

telt, t) (22)

9g(x(t))\ T ,
) n for some Me¢E (23)

(i1) plty) = (T
(iii) for every ve U and almost all te [to, tf]\;,

Ky RO, GO+ KUy, XKD, W) >

Cbp elxt), v)> + Kbylt), €x(8), M. .0 (24)

111, Reduction of a Vector-Valued Criterion to a Family
of Scalar-Valued Criteria

_ We now examine the possibility of solving the Basic
Problem by weighting the components of the vector criter-
-ion function into a scalar criterion, thus. reducing the prob-
lem to a family of scalar valued criterion problems. The
weighting common in economics and in engineering is with
strictly positive weights only. However, we shall also con-
sider the degenerate case in which some of the weights can
be zero,
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In this section we restrict ourselves to the partial
ordering def1ned as, follows Given yp, y, in EP, V1< Y2
if and only if yl < YZ for i=12,...,p. With this ordering,
for any vector y in EP, the critical index set J(y) is the
set {1: 2: e s s P}-

. In order to simplify our exposition, we combine the
constraint set @ with the set {xeX |r(x) = 0} into a set
A= {xeXlr(x):O} ‘

Definition 3: We shall denote by P the problem of
finding a point x in A such that for every x in A, the rela-
tion h(x) < h(x) (componentwise) implies that h(x) = h(x).

Definition 4: Given any vector \ in Ep we shall
denote by P(M) the problem of finding a p01nt X in A such
that (A hW(x)) < <\ h(x)) for allx in A,

Definition 5: Let A be the set of all vectors A=
(hl, ve., NP) in EP such that = M=1and Ai>0 for i=12,
eees P; let A be the closure of A in EP

We shall consider the following subsets ofx

L= {x ¢A| x solves P}  (25)
M= {xeA[ x solves P(\) for some \eA } (26)
N = {xe¢ A| x solves P(\) for some \eA } . (27)

Remark: It is trivially verified that M is contained in L and
in N, Furthermore, it is easy to show by example thatif h
is a continuous function, then the closure of the set M is
contained in the set N and that this inclusion may be proper.
(see(11 ). It can also be shown that (see(11)) if for each
MeA either P(\) has a unique solution or else it has no solu-
tion, then the set L contains the set N, _

Theorem 3: Suppose that h is a convex function
(componentwise) and that A is a convex set. Then the set N
contains the set L.,

Proof: Let x be a pointin I, i,e., x is a solution to the
problemm P, Let

A= {a=(d, o, ...dP |h'(x) - K%Y <o, i=1,2,...,D,
for some x-eA} . (28)

7
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Since X is a solution to P, A does not contain the
origin, Furthermore, since.h is convex, A is a convex
set in EP, By the separation theorem (12) there exists a
vector @ in EP, & # 0 such that

{aa> >0 for all ae A, g AR (29)

Since, each o can be made as large as we wish, we
must have @ > 0 and hence @ > 0, For any positive scalar
€>0, let = h(x) - h(X) + ee for some x in A and e =
(1, ,,...,1). The vector « is in A by definition, and hence,
from (29) '

<T hx) - HE) >-c{Ged. (30)

Relation (30) holds for every x in A, and since ¢ is arbi-
trary, _ R
{a,h(x) - h(x)) >0 forall xeA, (3D

P
If we define \ = @/ z o.'l, then % eA and,
~ i=1 | B |
NhEY < <N h(x)) forall xeA ©(32)

But (32) implies that xeN, |
Corollary: If A is convex and h is strictly convex (com-
ponentwise), then L = N, = )

Definition 6: We shall say that a solution x of the
problem P is regular if the relation h(x) = h(y) implies
that x = vy,

We shall say that the problem P is regular if every
solution of P is a regular solution, ’

Remark: It is easy to verify that if h is convex and one of
its components is strictly convex then P is regular,

Theorem 4: Suppose that the problem P is regular,
that h is continuous and convex, and that the constraint set
- A is a closed convex subset of a Hausdorff, locally convex,
linear topological space X , with the property that for some
closed convex neighborhood V of the origin, the set A((V+x)
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is compact for every x in A, Then the set L is contained
in the closure of the set M, : \
Proof: Let X be any pointin L, let A'= AN (V +x), and
let L', M' be defined by (25), (26), with A' taking the place
of A, First we show that h(L') C h(M'). Since A' is com-
pact and h is continuous, h(A') is closed, and for every
€>0, y-c¢ A is closed by construction, Let ;r be any point
in h(L') Then, clearly, the closed, convex sets h(A') and

(y -eA) are separated for every ¢ > 0, Consequently, for
every € > 0, there exists a 8(g) ¢ (O, e] such that the closed

convex sets h(A') and N(¥ - eA, 8(e)) are disjoint, where

N(y -eA,8e))={y=y' +y"[y'e (y-eA ) and [y"[< 8(e)}

C EP, _Now, for every ¢>0, -let y ¢ h(A') and s_ «
N(y - e A, 6(¢)) be such that I Ye = Se | is the m1n1mum dis~
tance between these two closed and dlsJolnt sets. Let N\ be

a normal to a separating hyperplane through y_, such that_ o

. Ouy-y> 20 forallyeh(an  (33)
and ' ' — |
RER, > <0 forall yeN(y-eA, 6(c)) (34)

then, from (33), <)\ y ¥ye» 2 0, and hence for every yeA

e N, 0>\, y-ye> > 0. But this means that A=o\', with
a >0 and Ae/A, Hence we may choose ¢ =1, i.e., A =\', thus
proving that y. ¢ h(M'), We now show that lim y,= vy, i.e.,
that 7 ¢ B(M). - e>ot

Indeed,

< 2(e + 6(¢) ) < 4. (35)

We now prove that LC M, Again let x be any point in I,
and let A', L!, M!', be defined as above, Then, from the
above, h(L') C h(M') and, by inspection, x e L', For
i=L2,3,...,1let y; € h(M') be such that yl - h(x) and let

x; € A' be such that h(x; ) = y., Since A'is compact, {x;}
contams a subsequence, f which converges to a point
X e A', Smce all subsequences of {y } converge to h(x), it
follows from the continuity of h that h(X) = h(x), and from -
the regularity of the problem P that X = X, Now, since

lye - Tl Uy - sell+ Nse = v I - sl + 115 - sl
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Xis ?>§, there exists an integer n_ such that X5, € int(V + x)

for all i; > ny . It now follows from the convexity of h that
for ij Zng xij e M and hence LLC M,

Conclusion

We should like to point out that our results.can
easily be extended to other types of ordering. For exam-
ple, consider cone orderings on RF of the following type:
¥, <y, if and only if (y; - y,) € G, where C is a given
convex cone, When C has an interior, we let q = p and.
modify (8) to read R = {(y, 0) ¢ EP X Emly eint C, 0 ¢ EM},
We then find that theorem 4 remains valid for cone order-
ings provided we replace the statement '"p < 0" by '"p is
in the cone polar to C," The scalarization theorems re-
main valid for cone orderings provided we replace the set
A bythe set D= {A| <\, v <0 for all y e C with
y # 0}, assuming, of course, that- D -is'not the empty set.
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